

Project Meeting #3

Tuesday, October 3, 2017

Weston County NRD Office 1225 Washington Blvd. Newcastle, WY 82701

WELCOME!!!

Watershed Meeting Topics

- Brief Watershed Study Introduction
- Current Status
- Geomorphology Stream Restoration
- What's next?
- Wrap up
 - Question/Answer and Open House Style

What is a watershed study?

The objective of a Watershed Study is to

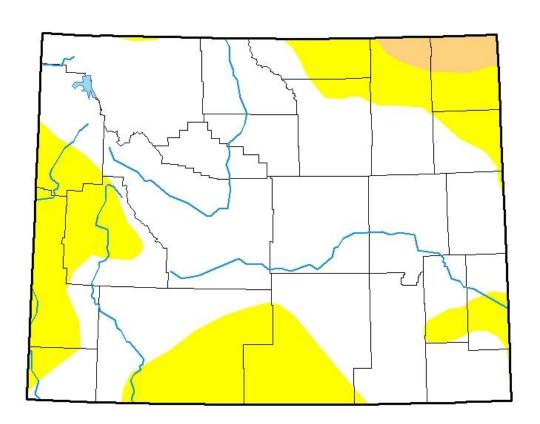
• Evaluate an individual watershed's existing conditions

And from collaboration with landowners, stakeholders, and public outreach

- Develop a Watershed Management and Rehabilitation Plan
- To identify projects that are eligible for funding that may improve or maintain watershed function and systems

Who is completing the study?

- Wyoming Water Development Office
 - Funding and Project Management
- Weston County Natural Resource District
 - Project Sponsor
- Olsson Associates and Steady Stream Hydrology
 - Engineering Support



U.S. Drought Monitor Wyoming

September 19, 2017

(Released Thursday, Sep. 21, 2017) Valid 8 a.m. EDT

Intensity:

D0 Abnormally Dry

D1 Moderate Drought

D2 Severe Drought

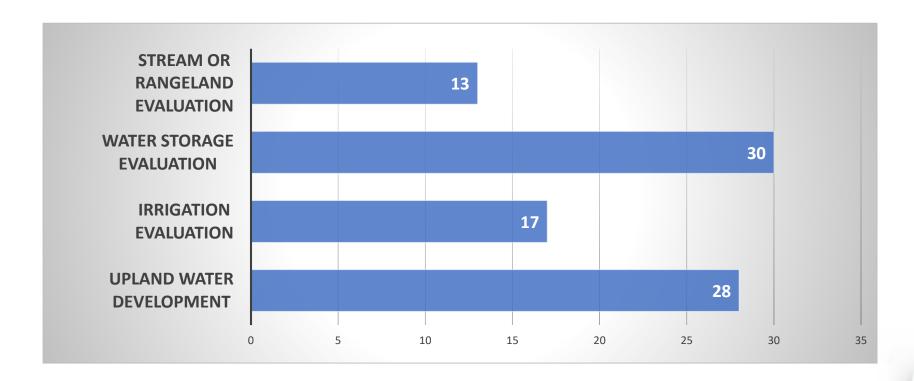
D3 Extreme Drought

D4 Exceptional Drought

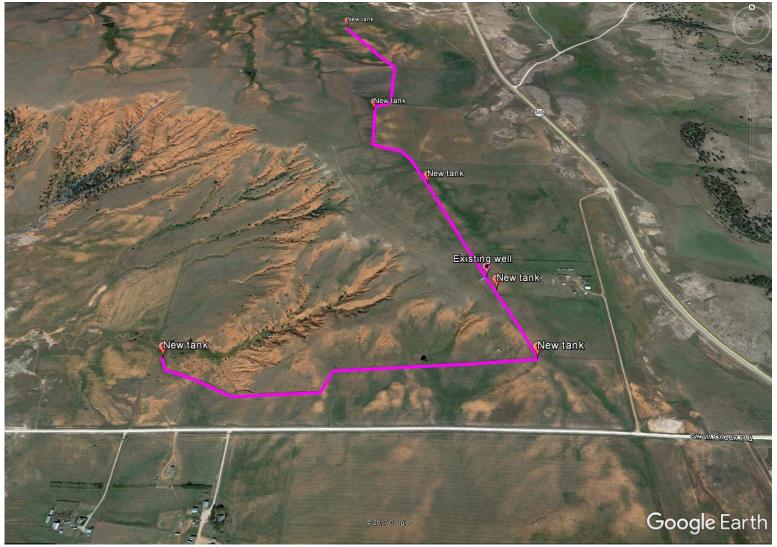
The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

Brad Rippey
U.S. Department of Agriculture

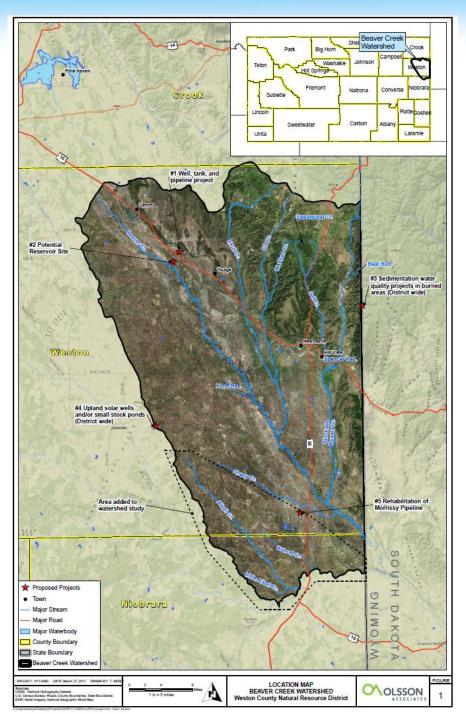


http://droughtmonitor.unl.edu/


Current Tally of Project Evaluations

Tally as of September 29, 2017

GoogleEarth Site Maps



Cost Estimates – In Progress

Projec	1	2	3		
Mob	\$1,000	\$3,000	\$3,000		
Well Construction / Conting	Units (each) Depth (feet)			2 450	
Well Construction/ Spring Development	Unit Cost (\$/LF well or \$/EA spring) Component Subtotal	NA	NA	\$66 \$59,400	
Solar Pump	Units (each)		5	2	
	Unit Cost (each)	NA	\$10,734	\$10,734	
	Component Subtotal		\$53,668	\$21,467	
Pipeline	Low Pressure Pipe Diameter (inches)	1.0		1.5	
	Units (linear feet)	10560	NA	5260	
	Unit Cost (each)	\$5.89		\$5.89	
	Component Subtotal	\$62,172		\$30,968	
Stock Pond Rehabilitation	Units (each)		7		
	Earthwork (cubic yards)		5000		
	Unit cost earthwork NA		\$4.30	NA NA	
	Agri-Drain Installation		\$4,800		
	Component Subtotal		\$155,307		
	Units (each)	6			
Livestock / Wildlife Water Tanks	Size (gallon)	1,000	NA	NA	
	Unit Cost	\$0.00	INA		
	Component Subtotal	\$0			
	Item			Fencing (linear feet)	
Other Components	Units (each)	NA	NA	1000	
	Unit Cost (\$/ea)	INA	INA	\$4.59	
	Component Subtotal			\$4,588	
Construct	\$63,172	\$211,975	\$60,023		
Enginee	\$6,317	\$21,197	\$6,002		
Construction and	\$69,489	\$233,172	\$66,025		
Conting	\$10,423	\$34,976	\$9,904		
Total Cons	\$79,913	\$268,148	\$75,929		
Final Plar	\$1,000	\$1,000	\$1,000		
Permitting/Le	\$2,000	\$2,000	\$2,000		
Total Projec	\$82,913	\$271,148	\$78,929		

Beaver Creek Watershed 760,029 AC

Classification of Streams:

- Beaver
- Stockade Beaver
- Parmalee
- Bear
- Salt
- Sweetwater
- Freshwater
- Oil
- West Plum
- Big Plum
- Skull
- Alkali
- Little Alkali
- Bobcat

2) Overlay the river system on the fluvial landscape to get the following:

- General channel slope (steep/flat)
- Channel bed features (step/pool or riffle/pool)
- Estimate of channel shape (general width/depth ratios categories <12, 12-40, >40)
- Pattern and profile to show floodplain extent
- Plan view pattern (single or multiple channels)
- Confinement (entrenchment slight, moderate, entrenched) or lateral containment (yes or no)

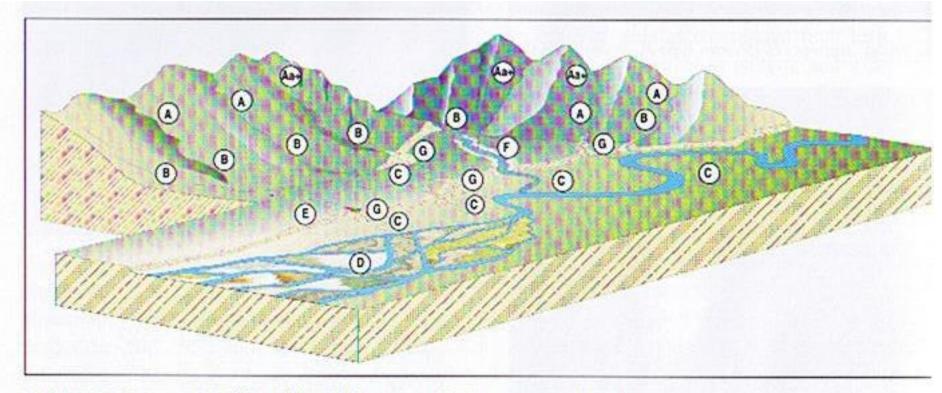
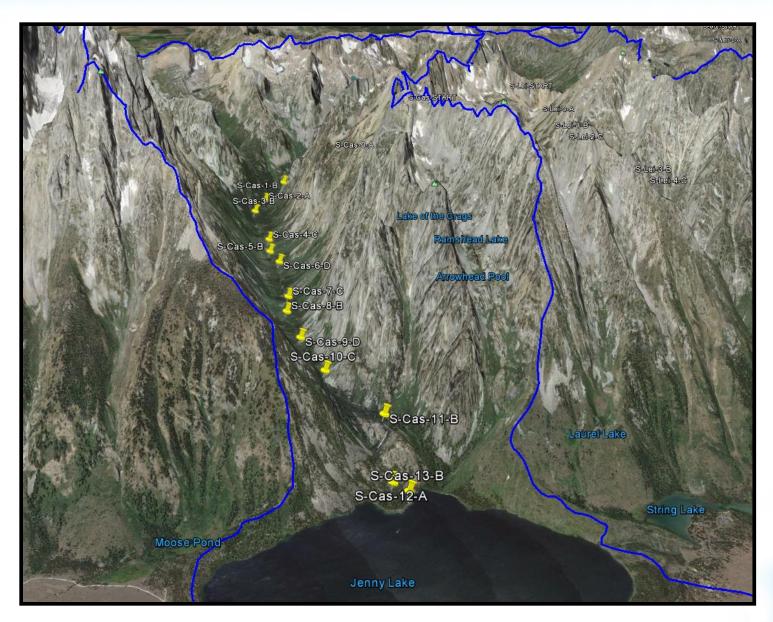



FIGURE 4-22. Example of broad level delineation of stream types at Level I.

Example – Upper Snake River

Example – Upper Snake River

REACH ID	WATERSHED	REACH NAME	REACH NUMBER	LANDFORM	VALLEY TYPE
S-Cas-0-A	Snake River	Cascade Creek	0	glacial/fluvial terrace	I
S-Cas-1-B	Snake River	Cascade Creek	1	glacial/fluvial terrace	II
S-Cas-2-A	Snake River	Cascade Creek	2	glacial/fluvial terrace	I
S-Cas-3-B	Snake River	Cascade Creek	3	glacial/fluvial terrace	II
S-Cas-4-C	Snake River	Cascade Creek	4	glacial/fluvial terrace	VIII
S-Cas-5-B	Snake River	Cascade Creek	5	glacial/fluvial terrace	VIII
S-Cas-6-D	Snake River	Cascade Creek	6	glacial/fluvial terrace	V
S-Cas-7-C	Snake River	Cascade Creek	7	glacial/fluvial terrace	VIII
S-Cas-8-B	Snake River	Cascade Creek	8	glacial/fluvial terrace	VIII
S-Cas-9-D	Snake River	Cascade Creek	9	glacial/fluvial terrace	V
S-Cas-10-C	Snake River	Cascade Creek	10	glacial/fluvial terrace	VIII
S-Cas-11-B	Snake River	Cascade Creek	11	glacial/fluvial terrace	VIII
S-Cas-12-A	Snake River	Cascade Creek	12	glacial/fluvial terrace	I
S-Cas-13-B	Snake River	Cascade Creek	13	glacial/fluvial terrace	VIII

TERRACE FEATURE	CHANNEL SLOPE	BED FEATURES	CHANNEL SLOPE	FLOODPLAIN	PATTERN	CONFINEMENT	LATERAL CONFINEMENT	CHANNEL TYPE
none	steep	step/pool	<12 w:d	none apparent	single	entrenched	yes	А
none	steep	step/pool	<12 w:d	none apparent	single	moderate	yes	В
none	steep	step/pool	<12 w:d	none apparent	single	entrenched	yes	Α
none	steep	step/pool	<12 w:d	none apparent	single	moderate	yes	В
none	flat	riffle/pool	12-40 w:d	active apparent	single	slight	no	С
none	steep	step/pool	12-40 w:d	none apparent	single	moderate	yes	В
multiple	flat	riffle/pool	12-40 w:d	active apparent	multiple	slight	no	D
none	flat	riffle/pool	12-40 w:d	active apparent	single	slight	no	С
none	steep	step/pool	12-40 w:d	none apparent	single	moderate	yes	В
multiple	flat	riffle/pool	>40 w:d	active apparent	multiple	slight	no	D
none	flat	riffle/pool	12-40 w:d	active apparent	single	slight	no	С
none	steep	step/pool	12-40 w:d	none apparent	single	moderate	yes	В
none	steep	step/pool	<12 w:d	none apparent	single	entrenched	yes	Α
none	steep	step/pool	12-40 w:d	none apparent	single	moderate	yes	В

Progress:

 Level I Stream Channel Classification is in the beginning phases for the entire watershed.

Questions:

Long Term Uses of Level I Stream Classification?

- on going channel restoration and stabilization as projects develop

Needs and wants of the watershed users?

 design and implement water development projects specific to stream channel classification

Why Do We Perform a Level I Study?

- For long term planning, sustainability, and projects

What's Next

Project Schedule = June 2017 – December 2018

